Interpolation methods to estimate eigenvalue distribution of some integral operators

نویسندگان

  • Entisarat M. Elshobaky
  • N. Abdel-Mottaleb
  • A. Fathi
  • M. Faragallah
چکیده

We study the asymptotic distribution of eigenvalues of integral operators Tk defined by kernels k which belong to Triebel-Lizorkin function space Fσ pu(F qv) by using the factorization theorem and the Weyl numbers xn. We use the relation between Triebel-Lizorkin space Fσ pu(Ω) and Besov space Bτ pq(Ω) and the interpolation methods to get an estimation for the distribution of eigenvalues in Lizorkin spaces Fσ pu(F qv).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator

We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.

متن کامل

Quasi-interpolatory and Interpolatory Spline Operators: Some Applications

In this paper we consider quasi-interpolatory spline operators that satisfy some interpolation conditions. We give some applications of these operators constructing approximating integral operators and numerically solving Volterra integral equations of the second kind. We prove convergence results for the constructed methods and we perform numerical examples and comparisons with other spline me...

متن کامل

Stable and Accurate Interpolation Operators for High-Order Multi-Block Finite-Difference Methods

Block-to-block interface interpolation operators are constructed for several common high-order finite difference discretizations. In contrast to conventional interpolation operators, these new interpolation operators maintain the strict stability, accuracy and conservation of the base scheme even when nonconforming grids or dissimilar operators are used in adjoining blocks. The stability proper...

متن کامل

A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator

The solution of eigenvalue problems for partial differential operators by using boundary integral equation methods usually involves some Newton potentials which may be resolved by using a multiple reciprocity approach. Here we propose an alternative approach which is in some sense equivalent to the above. Instead of a linear eigenvalue problem for the partial differential operator we consider a...

متن کامل

Assessment of methods for the numerical solution of the Fredholm integral eigenvalue problem

The computational efficiency of random field representations with the Karhunen-Loève expansion relies on the numerical solution of a Fredholm integral eigenvalue problem. In this contribution, different methods for this task are compared. These include the finite element method (FEM), the finite cell method (FCM) and the Nyström method. For the FEM with linear basis functions, two different app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004